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It is shown how the self-consistent phonon Ansatz leads to a new class of 
exactly soluble models of a structural phase transition. Both nonpolynomial 
anharmonicity and disorder are analyzed in detail. In the classical limit, the 
thermodynamics is obtained and sufficient conditions on the anharmonicity are 
given to ensure a soft-mode phase transition. Diagonal disorder has been 
studied numerically. It is found that in three dimensions a pronounced mobility 
edge, separating localized and delocalized phonon states, may exist. 
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mode; large deviations. 

1. I N T R O D U C T I O N  

A s t ruc tura l  phase  t rans i t ion  (1) occurs  when a mate r ia l  changes its 
c rys ta l lograph ic  structure.  At  m a n y  of  these t ransi t ions ,  the a toms  in the 
d is tor ted  phase  are sl ightly displaced,  away  from their  equi l ib r ium 
pos i t ions  of  the h igh - t empera tu re  phase.  One  therefore has to pay  careful 
a t t en t ion  to the na ture  of the in te rac t ion  potent ials .  Since mos t  
exp lana t ions  have been per formed  in the context  of the se l f -consis tent  
phonon approx imat ion  and  L a n d a u ' s  theory  of  phase  t ransi t ions ,  (2) a 
mic roscop ic  underp inn ing  of these phenomeno log i ca l  cons idera t ions  (see, 
e.g., ref. 1) seems highly desirable.  

Some years  ago Schneider  et al. (s) p r o p o s e d  an interest ing mode l  to 
descr ibe  s t ruc tura l  phase  t rans i t ions  of the above -men t ioned  type. This 
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model has been extended recently (4) so as to allow a more realistic but still 
somewhat special nonpolynomial anharmonicity. It has been solved exactly 
through the use of the approximating Hamiltonian method./5'6) Since the 
operators involved are all unbounded, the ref. 4 incorporated an extension 
of the usual theory, ~7'8) which presupposes bounded operators only. 

The aim of the present paper is threefold. First, we will demonstrate 
how the results of ref. 4 can be generalized to a large class of Hamiltonians 
with nonpolynomial anharmonicity. To this end, a large-deviation method 
developed by van Hemmen (9'1~ will turn out to be instrumental, We 
restrict ourselves to the classical mechanical context. The second object of 
this work is to show that the self-consistent phonon Ansatz [cf. Eq. (1.4) 
below] leads to a new class of exactly soluble models and to prove that the 
solutions agree with what is usually called the "self-consistent phonon 
approximation. ''(1'2) So we also establish the status of this approximation 
by showing the conditions under which it gives rise to exact results. In 
addition, the large-deviation method ~176 allows us to handle efficiently 
"impurities" which correspond to external (quenched) random fields or 
random distortions and which are linear or quadratic in the displacements. 
It will be shown that the second possibility ("quadratic disorder") is closely 
related to the Anderson model. ~11'u) 

To describe a structural phase transition, we start with the following 
Hamiltonian: 

/4A = H I ~  ~ U(Q 2) (1.1) 
l e a  

where U is the anharmonicity corresponding, for instance, to a double-well 
potential, and 

,+1 ,~A r (Qz,~, Q,,,~,) (1.2) 1 p2 + 7  z H(A ~ Z ~m '~ (Q,.~-Qr.~) "~' - 

l e A , u  
O;, r 

describes the lattice in the harmonic approximation. Moreover, Q~= 
{Q,,~}~=, and P , =  {P,.~}~=, are the displacement and momentum of a 
particle with mass m at the site l of, say, the d-dimensional (hyper) cubic 
lattice Z d, while A t 2  a is a finite domain with N =  IAI sites. The 
anharmonicity U has the form 

a 
U(Q~) =~ Q2 + W(Q2) (1.3) 

A typical example is U ( x ) = - - A x 2 +  Bx 4, A, B>0; the particular case 
considered in ref. 4 is a >  0, W(x)= �89 exp( -6x) ;  b, 6 >~ O. 
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To attain further progress, the Hamiltonian (1.1) has to be simplified. 
It was noticed in ref. 4 that an exactly soluble mean-field (self-consistent 
phonon) Hamiltonian may be obtained through the Ansatz 

To simplify the notation, we restrict ourselves, without loss of generality, to 
only one degree of freedom and take n = 1. Note that the harmonic part of 
(1.3), corresponding to 1 2 ~aQt, is invariant under the transformation (1.4). 
We therefore incorporate it into H(A ~ and rewrite the Hamiltonian in the 
form 

HA= T~Aa)+NW(N-I ~ Q~) (1.5) 
l e a  

with 

2Z~A Q~+-~ Z qOH'(Qz--Q' ')2 (1.6) 
l , l ' 6 A  

Two remarks are in order. First, we have dropped the kinetic energy 
term since in classical statistical mechanics it is irrelevant. Second, for 
translationally invariant q~H,=q~t_ r the first term in (1.6) stabilizes the 
lattice. (13) We wilt assume this translation invariance throughout what 
follows. Furthermore, for the sake of simplicity, ~bt_r=0 if II-l'[ >R, 
that is, we assume a finite-range interaction. 

In Section 2 we derive an explicit expression for the free energy density 
f ( / / )  of the model (1.5) without specifying the function W. This allows 
quite a bit of freedom to model practical situations. The (exact) solution is 
obtained through a simple and elegant method (see refs. 9, 10, and 14) 
based on the philosophy of the theory of large deviations. This approach 
allows us to generalize those results of refs. 4-6 which were obtained in the 
classical limit. In Section 3 we indicate how the effect of "impurities" can be 
incorporated into the Hamiltonian (1.5). The thermodynamic behavior 
of the system with a "quadratic disorder" in the Einstein phonon 
approximation is discussed there together with the phonon localization 
problem. A summary may be found in Section 4. 

2. FREE E N E R G Y  DENSITY:  A N H A R M O N I C I T Y  A N D  
P H A S E  T R A N S I T I O N S  

In this section we calculate exactly (in the thermodynamic limit) the 
free-energy density 

f(f l)  = lim (-fiN) -1 In ZN(~) 
N ~  

822/53/3-4-19 
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for the Hamiltonian (1.5) and describe the class of nonpolynomial anhar- 
monicity for which this is allowed. 

The method we use is based on the theory of large deviations. To 
explain it, let us introduce the variable mN = N -1 Zt~a Q2. To calculate the 
partition function ZN(fl) for the Hamiltonian (1.5), we note that the space 
of configurations {Q(A)} can be pictured more geometrically as a union of 
surfaces, or fibers, m = mN(Q (A)) with 0 ~< m < ~ ,  so that 

ZN(fl)= f ;  dm f{Q(a,:mN=m} l~ A dQ,exp(-flHA) 

fo = dm e nNw(m)ZN(fl, m) 

Here Zu(fl, m) is the partition function of the system with the Hamiltonian 
T~") of (1.6) in the microcanonical ensemble mu(Q (A)) = m. Now we define 
the probability distribution 

PN(dm) = 

ZN, a(~) = 

[ZN, a(~) ] -1 ZN(~ ' m) dm 

f 1-[ dQ, exp(--flT(A a)) 
leA 

(2.1) 

Consequently, the free energy density f(fl) has the form 

1 
f ;  PN(dm) exp[-flNW(m)] (2.2) f (~ )  = fa([~)-- Nli moo In 

where fa('[~) is the free energy density for the harmonic system (1.6) in the 
grand canonical ensemble: 

f ,(fl)  = lim ( N ~  -- -fiN) lnZN'a(fl) (2.3) 

Now we consider the c-function (9'1~ 

CN(t )= In exp tt~zZ Q~ ~ f =  In eN(dm) e tNm (2.4) 

Here ( - ) ~  is the finite-volume Gibbs state for the Hamiltonian T] a). The 
sequence {CN(t)} N obviously has the following properties: 

(i) Functions {CN(t)}N are finite and convex for t < fl~/2. 
(ii) For t <fla/2 the pointwise limit c(t)=limN+o~ CN(t) exists and 

has the form 
c(t) = fl I f , (# )  --)ca_ 2,/t~(fl) ] (2.5) 

(iii) e(t) is differentiable for t < fla/2. 
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This means that the sequence of probability distributions {PN(dm)}N 
has a large-deviation property with the entropy function c*(m), (9'1~ 
where 

c*(m) = sup [ t m -  c(t)]  (2.6) 
t < , f la/2 

is the Legendre transformation of c(t). In other words, 

P N(dm) ~ dm exp[ - Nc*(m) ] (2.7) 

as N ~ c ~ .  
To apply (2.7) to the evaluation of (2.2), one has to formulate some 

conditions on the function W(m). We assume that there is mc/> 0 such that 
for m >~ rn c one has (see Fig. l)  

a+ 2W'(m)>>.O (2.8) 

and the integral in (2.2) converges for an arbitrary N. Then, using a 
Laplace argument and Eqs. (2.2) and (2.7), we get 

f(/~) = f ~ ( / ~ ) - i n f  [W(m) +/~ ~c*(m)] (2.9) 
m 

If we assume in addition that W(m) is continuously differentiable on (0, ~ )  
and is such that W ( m ) + f i - l c * ( m )  reaches its infimum at a single point 
rh = rh(fl), then by exploiting the identities 

c*(m) = m'i(m) - c(~(m)), 8mC*(m) = 7(m), O,c('i(m)) = m 

1 A m + ~ B m  2 / 2 / 

~- am + W2(m) ~ , . , . , .~ . . .  

I I ~ / t . ~  + am  

[ ! / ~ ' -  ~am +W 1 (2m) 

0 " ~  mc ~1 m~- / m 

Fig. 1. Anharmonic potentials WI and W 2 corresponding to two different regimes considered 
in the text. For the first case, a+2W'l(m)>~O; for the second, a+2W'2(mc)=O, mc>0. 
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one can rewrite Eq. (2.9) as 

f ( f l )  = f~ + 2w'(,~)(fl) + [ W(rh) - ~ W'(th)] (2.1o) 

Here rh(//) satisfies the fixed-point equation 

m = ~,c[--[38,~ W(m)] (2.11) 

Therefore, our model (1.5) is thermodynamically equivalent to a harmonic 
system (1.6) with renormalized constant a: a ~ a + 2W'(rh). 

In passing, we note that the particular case considered by ref. 4 
corresponds to W(m) = �89 exp ( -6m) ,  b > 0, 6 > 0. It describes a structural 
phase transition in the mean-field (self-consistent phonon) model which 
mimics a double-well potential with Gaussian anharmonicity. 

To analyze possible phase transitions in the system (1.5), one has to 
take into account the explicit formula for the free energy density f~(//). 
Using (2.5), one gets for (2.11) 

1 1 1 1 
m =  lim fl-ll(aN)(m)= lim ~ +ulirnoo • (2.12) 

U ~  oO N~ oo flN O q=o(m ) ~ 02q(m) q ~ A *  
( q ~ O )  

where 

122q(m) = [a + 2W'(m)]  + [ $ ( 0 ) -  $ (q ) ]  

Here {(2q }qaA* a r e  the frequencies of the harmonic system corresponding 
to (2.10) with periodic boundary conditions, the wavevectors q belong to 
the Brillouin zone A* of A, and $(q)  is the (discrete) Fourier transform of 
q~l-r, l, l' EA. 

As follows from (2.12), there are (at least) two different regimes for the 
behavior of the "order parameter" rh(fl). 

First, let a + 2 W ' ( m ) > ~ e > O  for m > 0  and a + 2 W ' ( 0 ) ~ > 0  (see Figs. 1 
2 [ s e e  and 2); then the contribution of the term corresponding to 12q= 0 

Eq. (2.12)3 tends to zero. Thus, Eq. (2.11) assumes the form 

R - 1  
m = ~ [ daq s = f l - l la(m ) 

(2~z) .)~ 
(2.13) 

where ~ =  {q: Iq~l <T r, c~= 1, 2,..., d}. Accordingly, there is no structural 
phase transition of the soft-mode typeJ 1) 

The second possibility corresponds to the case when a + 2 W ' ( m )  
reaches zero for an m c > 0; see Fig. 1. For finite N, Eq. (2.12) then has the 

. \  
solution mN approaching rn~ (when N ~  oo) for 0~<0c; for 0 > 0 c  one has 
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(~ .{NI / 

l ~ / ~  id.i (m) 

0 ~--~,(I) ~..i~l) rn I l l  N (a) 

ld(m: =) 

! 

I ' 1 

, / I ~  ~ ( m ) /  
, "~,. . , . "~ ~' ~ 

o m ) , . .  \ m 

~.(1%) m.(Oc) m.(13,) (b) 
Fig. 2. (a) Graphical solution of Eq. (2.12) for the cases (I) a+2W'(m)>O and (II) 
a+2W'(m)=O at m = 0 .  (b) Situation when a+2W'(m) vanishes at m = m c > 0 .  Arrows 
indicate how rh N converges to m< or rh(fl), respectively, for/7 >/~c or/7 ~</~c. 
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Fig. 3. 

.-7 ~ "  

m c Z ~ "  Id (rn =~) 

I< 
/ J  1 

. i  1 
1 1  I 

0 ~c e 

Temperature dependence of the "order parameter" ~(0). Here m~ and O~ are defined 
by Eq. (2.14). 

a+2W'(rnN)>O and ~ l N ' - ~ I ~ ( f l < f l c  ) a s  N--* oo; see Figs. 2 and 3. Here 
the critical temperature 0~ =/~71 is determined by the condition (see Fig. 2) 

mc = Ocla(m~), a + 2W'(mc) = 0 (2.14) 

This situation corresponds to the well-known structural phase transition 
with a soft-mode (1'2) 

/.~ (fl) = ~/~/(]~), fl~flc Oq_0 = ~" >0, O>Oc (2.15) 
tmc, [3>fl~ - {0, O<~Oc 

Here, as above, rh(fl) is the solution of Eq. (2.13). 
In the particular case W ( m ) = l b e x p ( - 6 m )  the phase transition 

occurs only if K=6-~ln(6b/a)>O, while mc(~c)=x>0 [mc(~:)=0 for 
~: < 0J. (4) Then one gets (see Fig. 3) 

exp(6mc) O(N_I) 
l~lN(~ > ~c) = mc q 62b( fl _ t i c )N  + 

mN(~ ~ ~c) = OId(l~vl(~) ) H- O( N -1) 
(2.16) 

Summarizing: Eqs. (2.10) and (2.11) contain all the relevant infor- 
mation about the system. Under suitable conditions, to be specified 
elsewhere, they may give rise to either a smooth thermodynamic behavior 
or a soft-mode structural phase transition. 
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3. FREE ENERGY DENSITY: A N H A R M O N I C I T Y  
AND DISORDER 

The impurities in the anharmonic lattice (1.1) create randomness in 
the parameters on which the Hamiltonian depends. Here we consider the 
case where the single-particle potential is random ("quadratic disorder"): 

Vo(Q~ ) = V(~,Q~) (3.1) 

The {~l}l~d are, e.g., independent, identically distributed (i.i.d.) random 
variables (random field on the lattice 7/d). AS compared to (1.3), we add the 
random potential Vr 2) to the deterministic W(Q~). 

In the particular case of ref. 4, one has 

2 _ _ 1  V~,(Qt ) - ~b exp(-6~lQ~) (3.2) 

which corresponds to a Gaussian perturbation with random width. 
To construct an exactly soluble anharmonic lattice with "impurities," 

we use the Ansatz (1.4) (self-consistent phonon model), which in this case 
says 

Vr V(N l l~A ~IQ2 ) (3.3) 

Now we are again in the position known from refs. 9, 10, and 14. So we 
can use the scheme based on the theory of large deviations adapted to the 
case (3.3). Namely, we introduce for a fixed configuration { = {~z}lr two 
variables 

1 1 
mN=~r Z Q~; qN=~ • ~,Q2 (3.4) 

I ~ A  I ~ A  

Then, as a first step toward the calculation of the free energy density for the 
anharmonic model with (anharmonic) impurities 

HA = T(A a) + NW(mN) + NV(qN) (3.5) 

one has to calculate the c-function (cf. Section 2) 

c( t )=  2 i m  1 ~ ln(exp(t" WN)) r (3.6) 

Here t = (tl, t 2 )  and w N = (NmN, NqN ) are vectors in ~2. 
The right-hand side of (3.6) can be represented as a difference of two 

free energy densities 

c(t) = flfa(fl)" lim flf(aN)2q/# 2tj//(fl[~) (3.7) 
N ~ o o  
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Here f{aN)z(q+t2)/#(fl) corresponds to a harmonic system with a random 
single-particle harmonic potential 

tl t2 HI)({)  = T ~ ) - - ~  Z Q2__~ Z r (3.8) 
l ~ A  l ~ A  

But now we can refer to the conventional wisdom about random 
systems(iS, 16) and state that, for tl, t2, and { such that 
Prob({t l  + t2~l< a}le~a)= 1 the limit in (3.7) exists and is independent of 

for almost all configurations {. Therefore, with probability one the 
c-function (3.7) exists, is independent of {, and is a convex function of the 
vector argument t. The same is valid for its Legendre transform 

c*(w) = sup[ t im + t2q - c(t)] 
t 

= tl(w)m + ?-2(w) q - c(~(w)) (3.9) 

Using the Laplace argument, one gets for the free energy density of the 
model (3.5) the following expression (cf. Section 2): 

f ( f l ) = l i m  ( - ~ N ) l n [ f  

xj 
l e a  

{ Q ( A ) : m  N = m ,  qN = q }  

dm f dq exp{ - f lN[W(m) + V(q)] } 

dQ~ exp( - fl T(Aa))] 

Here we assume that the functions W and V are differentiable and satisfy 
the inequality 

a + 2 W'(m) + 2 V'(q) >~ 0 (3.11) 

This inequality guarantees the stability of the system (3.5); see below. 
One can derive an explicit expression for the infimum in (3.t0) without 

evaluating c*(w) explicitly. To this end, we note that a minimizing w in 
(3.10) satisfies 

Vc*(w) = - f l{  W'(m), V'(q)} (3.12) 

To obtain Vc*, we return to (3.9) and differentiate the last term, realizing 
that we need not take into account the implicit dependence upon m and q, 
since ~(w) maximizes the expression in the middle. This gives 

Vc*(w) = ~ =  {tl(w), i2(w)) (3.13) 
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Comparing (3.12) and (3.13), we obtain i itself. Since i also satisfies 
w = (m, q) = Vc(i), we are left with a fixed-point equation for m and q, 

m = a t ~ c ( - f l W ' ( m ) ,  - f l V ' ( q ) )  

q = 0,2c ( -  ~W' (m) ,  - fl V ' (q))  
(3.14) 

Let us denote the solutions to (3.14) by ~. We then get from (3.10) 

/(/7) =f,(,~)(/7) + W ( r h ) - r h W ' ( r h ) +  V(CT)-(TV'(gl) (3.15) 

We have to minimize (3.15) with respect to all "~ which satisfy (3.14). Here 
a ( ~ ) = ( a + 2 W ' ( r h ) ,  2V'(c])). Consequently, fa(~)(/7) is the free energy 
density for the system with the Hamiltonian (3.8), where tl = -2/TW'(rh), 
t 2 = - - 2 f l V ' ( q ) ,  i.e., the Eqs. (3.14) are equivalent to 

m = lim 
N ~ o o  

q = lim 
N ~ o o  

(3.16) 

Summarizing: The anharmonic system with "impurities" described by 
the Hamiltonian (3.5) has an exact solution represented in a (very) implicit 
form by Eqs. (3.14)-(3.16). Therefore, to analyze the effect of anharmonic 
disorder in the framework of the Hamiltonian (3.5), one should either 
simplify the model or use numerical calculations. 

3.1.  E i n s t e i n  P h o n o n s  

In the case of Einstein phonons, ~t- t ,  vanishes for 14=l' and the 
phonons are completely localized. (~) For the sake of simplicity, we take 
into consideration only anharmonic disorder, i.e., W =  0. Then the effective 
(approximating) Hamiltonian (3.8) takes the form 

=s S 2 ,~A Q~+ V'(~) Z~A ~ r (3.17) 

For the free energy density (3.15) one gets 

f(/7) = V(~) -cTV' (~) -  .,,_,!irn g In 

(3.18) 
0 

~ =  lira --1 ~A~12[a/2 
N ~ oo N t + V'(c]) Ct] 
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At this stage one should specify the random field {~}t~z~. Here we 
consider i.i.d, binary random variables {~,= +1} ;  Prob{~t=  + l } = p ,  
P r o b { ~ t = - 1 } = q = l - p .  Then one can calculate limits (3.18) in the 
explicit form 

7~ 
§ < ,319> 

g t = [ a ( P - ~ ) - V ' ( g l ) ] ( 2 f l { ( ; ) a - [ V ' ( g t ) ] 2 } )  -1 

For a particular case of the potential (3.2) one has V'(q) = -Xb 6e -~q and 
8b<a [stability condition (3.11)], while f(/~) and c](/~) are smooth 
functions of/L The critical value p = p~ corresponds to the condition 

a(p - �89 + �89 = 0 

For p = Pc the parameter ~ vanishes for all temperatures, while for p > p~ 
one has ,~ > 0 and for p < p~, q < 0; 0 = 0 only for 0 = 0. 

3.2. Local izat ion of  Phonons.  Numer ica l  Results 

Localization of phonons is one of the most intriguing phenomena in a 
harmonic lattice with disorder. In a recent paper (17) (see also ref. 18) this 
phenomenon was observed in a lattice with random masses. In our model 
(3.5) (for simplicity we put W= 0 and r = O6t, r _ ; ,  [[p[] = 1) anharmonic 
disorder leads to the effective Hamiltonian 

2,~AQZ+~q)~.(Q_Qz+p)z+v,(( t)  ~ ~ ,Q2 (3.20) 
l,p l ~ A  

Therefore, the eigenvalue problem for phonon frequencies {oJ} is given by 

(me)2-a)Q,=~,Q,+(-AQ)I,  ~,= ~tv ' (0  ) (3.21) 

where (AQ)t=SZ p Qt+p-2dQ~ is the discretized Laplacian. As above, we 
consider this problem for an i.i.d, random field {~,}t~z~: Prob{~,=  1} = p, 
P r o b { ~ t = - 1 } = l - p .  Then Eq.(3.21) is equivalent to an Anderson 
model with a binary distribution (see, e.g., ref. 19), 

EQt = e,Qt- ~ Qz+p 
(3.22) 

E = moo 2 - -  a - -  2d, ~t = ___e, ~ = V'(0) 



St ruc tu ra l  Phase Transition 847 

Our procedure to exhibit localization of phonons and to find a 
mobility edge follows that developed in recent papers. (17'19) Through an 
exact numerical diagonalization we find all the eigenvalues and eigen- 
vectors of the problem (3.24) for A ~ 7/u (d=  3) and a fixed realization r of 
the random field {e~}t~zd. Then we examine the inverse participation ratio 
(IPR) 

\ 
Q,s ~ Q,,E) (3.23) IPR(Qz)=  ~ A 4 / Q ~ A  2 2 

for each eigenvector Q s =  {Qhe}/~A" Delocalized phonons are expected to 
have small IPR of order IA1-1, while localized ones show larger values of 
IPR; e.g., the IPR equals one if Qe is localized at one site as for Einstein 
phonons. For a given random field {et}l~ ;~ we need not average over many 
samples (or configurations a), since localization/delocalization phenomena 
should occur with probability one, i.e., for almost all realizations a of the 
random field. This means that for large N =  IAI (say, N "~ 1000) all samples 
show essentially the same behavior; see refs. 15 and 16. 

To display the results, we arrange the eigenvalues {Ek} in an 
ascending sequence E1 < E 2 <  ...  <Ew and plot the IPR against the 
label k. 

Insofar as the amplitude e of the random field {et}~A is a function of 
the "order parameter" q(fl) [see Eqs. (3.16), (3.22)], the interesting 
problem is whether localization/delocalization of phonons depends on e. 
The importance of percolation effects as the site energies {et}~A increase in 
absolute value was observed in refs. 17-19. 

A numerical simulation has been performed for three-dimensional 
10 x 10 x 10 systems with periodic boundary conditions for p=0 .25  and 
p = 0.50 and e = 1, 2, and 4. 

If p=0.25,  then e l = - e  percolates (for d = 3 ,  site percolation 
threshold pc=0.312), but sz= +s does not. Since 2d is equal to the norm 
of the kinetic energy (hopping) operator K, (KQ)~= - Z o  Qt+p, for e i> 2d 
the positive-energy eigenstates of the problem (3.24) are expected to be 
localized on finite clusters with ez= +e, whereas the eigenstates 
corresponding to negative energies may be spread out on the percolating 
(infinite) cluster of sites with et = -~. Figures 4-6 confirm this observation. 
It turns out, however, that there is something like a critical G < 2d such 
that for e ~< ec there is no localization whatsoever, whereas for e > G the 
states with E > 0  do localize. Note that the upper row gives the labels 
k = 100, 200 ..... explicitly and the lower row gives the corresponding eigen- 
values Ek, 100 ~< k ~< 1000. 

For e = i, the IPR criterion shows (see Fig. 4) the complete absence of 
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0.  OO& 

c~ o. oo 1 
O.00 

O. 002_ 

0 . 0 0 L  

ido e& ~6o ~6o s6o 640 760 do 940 iOOO 

3 . 8  - 2 . 8  - 2 ,  1 - 1 . 3  - 0 . C  0 , 2  1.0 1.8 3 .0  5 . 6  

Fig. 4. The inverse participation ratio (IPR) of a 10 x 10 x 10 system with p = 0.25 and e = t 
ploted against the label k. Below the labels k = 100, 200 ..... 1000, one can find the eigenvalues 
Ek. The sites l with e~= - 1  percolate (pc=0.312 for site percolation when d =  3) but their 
counterparts do not. Note the extremely small values of the IPR and the complete absence of 

localized states. 

localized states. For  s =  2, the I P R  gives a similar picture: only for E >  1 
does the I P R  increase appreciably, suggesting a tendency to localization, 
but these states are still delocalized. Finally, for s = 4 the positive-energy 
eigenstates do localize with clear mobili ty edge at E = 0. 

On  the other  hand, if p = 0.50, then both  sz = +s  and g~ = - e  percolate 
in d = 3. For  e = 1 we again observe a complete absence of localized states; 
see Fig. 7. One  gets a similar picture for e = 2 (Fig. 8). But for e = 4 the pic- 
ture is more  complicated (Fig. 9). First, we observe resonances: delocalized 

~[~ 0 .Q2 

0 , O l  

1do e~o 3do .~o s& 6do~ 740 860 9Jo lo~oo 
- 4 . 7  - 3 . 7  - 2 . s  2.1 - 1 . 3  - 0 . S  0 . 5  [ . s  3 .3  S,8  

Fig. 5. As Fig. 4, for ~ = 2. There is a wel l -pronounced increasing of the [PR for k ~> 750, 
which anticipates localization. However, at1 the states are stilt delocalized. Note the difference 

in scale between the cases ~ = 1 and e = 2. 
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0 . 2  

0 . }  q 

I J I 

~0 ~60 3~0 ' 4~0 ' ~ 0  6~0 7do 80o 9~0 ~000 

- 6 . 6  5 . 6  - k ! . ?  L,,O - 3 . 2  2 . 3  - l .  ~- 3 . 3  4 . 8  7 , 2  

Fig. 6. As Fig. 4, for ~ = 4. A clear mobility edge appears at E = 0; the states for E > 0 are 
localized. So e = 4 is already beyond a critical ec. Note the difference in scale between ~ = 1 
and e = 4. 

e igens ta tes  wh ich  a re  s t rong ly  p e a k e d  at  o n e  o r  ve ry  few sites. Le t  us con-  

s ider  a smal l  c lus te r  o f  et = - 4  sites s u r r o u n d e d  by e~ = + 4  sites such  tha t  

one  o f  the  ez = + 4  sites is c o u p l e d  to  an  inf ini te  c lus ter  of  el = - 4  sites: this 

is n o t h i n g  bu t  c lus ter  screening.  Then ,  the  sc reened  par t ic le  can  " t u n n e l "  

t h r o u g h  a e t =  + 4  bar r ie r .  The re fo re ,  there  exists an  e igens ta te  wi th  an  

a p p r e c i a b l e  a m p l i t u d e  on  the  smal l  c lus te r  et = - 4  and  a smal l  a m p l i t u d e  

on  the  inf ini te  e t =  - 4  cluster .  Th is  p h e n o m e n o n  is ca l led  a r e sonance .  (~7) 

F i g u r e  9 shows  ev iden t  r e sonances  at  k ~ 230, 360, 770, 800, 840, a n d  990 

a n d  a b u m p  n e a r  k =  500. W e  do  n o t  k n o w  w h e t h e r  the  b u m p  in the  

m i d d l e  has  any  ghys ica l  r e levance ,  bu t  it is h a r d  to  i m a g i n e  a m o b i l i t y  edge  

there.  

, , , , , - -  . . . .  

log0 ~00 

- 3 . 5  -2 .L !  - 1 . 6  0 . 8  - 0 . 0  0 , 8  1 .6  2.LI 3 . 5  6.  1 

Fig. 7. As Fig. 4, except for the fact that p = 0.5. Both st= +1 and Et= -1  percolate, since 
Pc = 0.312 for site percolation. Note the extremely small values of the IPR and the complete 
absence of localized states. 
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0.01[ 

O .  S O ~  

Fig. 8. 

lo0 2do sdo ~o  s8o 5do 7do 8do 88o ~o~oo 
- q . 2  - 8 , 0  2.  i - 1 . 2  O,O 1. 1 2. I 3 . 0  q . 2  6 , 7  

As Fig. 7, for e = 2. Note the IPR scale and the absence of localized states. 

4. S U M M A R Y  

We have obtained a class of exactly soluble models of  a structural 
phase transition. To get an explicit solution, we used a method  developed 
in refs. 9, 10, and 14. In  addition, this method  allows us to develop results 
obtained in ref. 4 for a general case of  anharmonic  (classical) lattices so as 
to incorporate  anharmonic  disorder also. Consequently,  this method  is 
more  efficient than the approximat ing Hamil tonian  method,  (4 8) though  the 
latter works for qua n t um  lattices as well. 

Ou r  main  results are as follows. 

1. A l a rge  class of  exactly soluble classical Hamil tonians  with non-  
polynomial  anharmonic i ty  is found and an explicit Ansatz for construct ing 

0.08 _ 

0.06 _ 

O.Dq 

0.02 

~Jo 2do ~do u~o sdo 6do ' ~Too ' 8do 9do lOOO 

- b . O  - q , 8  - 3 . 8  - 2 . 7  - 0 . 7  2 . 7  3 , 0  4 . 8  5 . 9  8 . q  

Fig. 9. As Fig. 7, but for e=4. Note the IPR scale, the well-pronounced resonances at 
k -~ 230, 360, 770, 800, 840, and 990, and the plain bump in the middle at k = 500. 
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such Hamiltonians is presented. The result coincides with that 
corresponding to the well-known self-consistent phonon approximation. (2~ 

2. Two important examples of thermodynamic behavior are con- 
sidered and sufficient conditions ensuring a soft-mode phase transition are 
isolated; cf. Figs. 1 and 2. 

3. It is shown that the same Ansatz gives exactly soluble models 
of a classical lattice with a general (anharmonic) disorder. In this case the 
exact solution is less explicit and one needs additional approximations or 
computer simulations. 

4. As a first example, we consider the case of Einstein (completely 
localized) phonons. Then, one gets explicit formulas for the free energy 
density and the "order parameter." 

5. In the second example the similarity of a "quadratic disorder" to 
the Anderson model is stressed. Numerical results for a three-dimensional 
10x 10x 10 system based on the inverse participation ratio criterion 
predict localization of phonons and a pronounced mobility edge. This 
occurs if the probability distribution for a random field (corresponding to 
disorder) is chosen suitably and its amplitude e exceeds a critical value ec. 
The first condition means that for a binary random field the sites with, e.g., 
+ e percolate but their counterparts with - a  do not. 

A possibility of localization and nonergodic behavior in a structural 
transition model without disorder has been discussed in ref. 20. 
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